

ONERA

THE FRENCH AEROSPACE LAB

www.onera.fr

Lessons learnt about MBSA for the safety analysis of drone designs

Pierre Bieber, Kevin Delmas, Sergio Pizziol Tatiana Prosvirnova, *Christel Seguin* 01/06/2023 Prenom.nom@onera.fr

Presentation context & objective

ONERA : the French Aerospace Lab

- ~1000 scientists who address major disciplines for aircraft design & operation
- Wind tunnels & various test benches

Works with DGAC in drone national projects since 2017

- Collaborative research projects with big and smaller aeronautics companies
- PHYDIAS project: exploration and application of methods for appraisal of drone design

Presentation objectives :

Lessons learnt from the safety analysis of 6 actual drone systems used in BVLOS operations

Salon-de-Provend

Studied drone systems

4 fix wings (6 system versions)

- Medium/long range operations over sparsely populated are
- MTOW : from 2kg, 25kg
- Engines electrical and thermic

2 rotorcrafts

- · Delivery of medical goods in populated area
- MTOW: 2,5kg and 100kg
- Engines electrical and thermic

1 aerostat

- Long range over sparsely populated area
- MTOW: 170 kg

4

Steps of safety analysis addressed in the presentation

Preliminary hazard analysis of the operation

• Can the drone be lethal? Who/what is at risk?

Specification of the safety policy

• When is the operation under control? How are mitigated the safety degradations?

Progressive safety review of the system design

- <u>Mitigation Procedures</u>: How human & systems share the operation supervision?
- <u>Functions</u>: How system functions implements the system tasks?
- <u>Physical resources</u>: How hard/soft component implements the functions ?
- \Rightarrow How these items fail? Are they robust enough ?

Preliminary hazard analysis of the operation

Goal: estimate the operation risks

- Primary safety risks: impact with ground or air collision
- Escalating safety risks : fire ...
- Other risks: breach of privacy, noise, ...

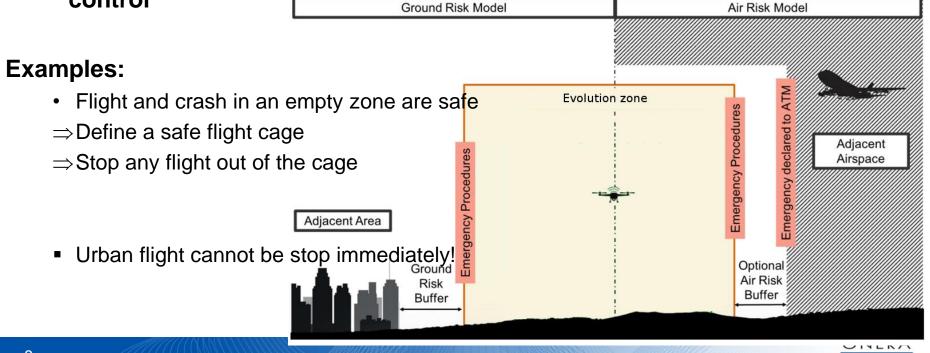
Guidance: excel check lists of influence factors for safety risks

- Impact mode : under parachute, spiral descent, ballistic descent ...
- Kinetic energy at impact
- Impact surface
- Density of overflown populations
- Proximity with other traffic ...

Preliminary hazard analysis of the operation

Example : fix wing of 25kg flying over population of 100 inhabitants / km2

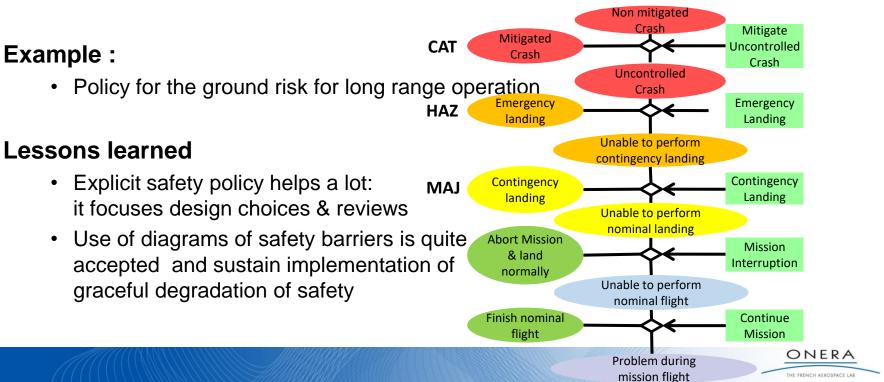
 Analysis output 		Thrust cutoff	Spiral	Ballistic
	Kinetic Energy (KJ)	9,65E+00	1,71E+00	2,94E+01
	Letality	1,00E+00	1,00E+00	1,00E+00
	Impact surface (m2)	242,1	152,8	22,1
	Inhabitante letal impact probability	2,42E-02	1,53E-02	2,21E-03


•Impact of the safety objectives for the drone, assuming an equi-repartition of the crash mode occurrences

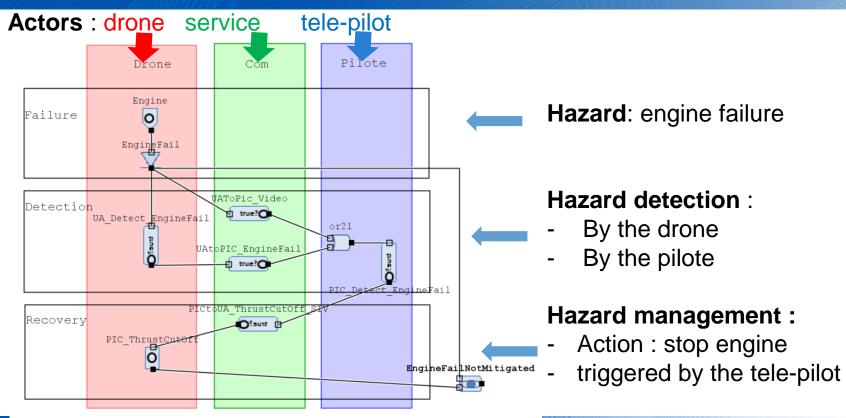
Criticality	Quantitative objective		
	Ground		
	Thrust cutoff	Spiral	Ballistic
HAZ	1,38E-06	2,18E-06	1,00E-05

Specification of a safety policy

Goal: specify rules to ensure safe flight and mitigate loss of operation control



HE FRENCH AFROSPACE LA


Specification of a safety policy

9

Guidance proposal : use diagram of safety barriers to state the policy

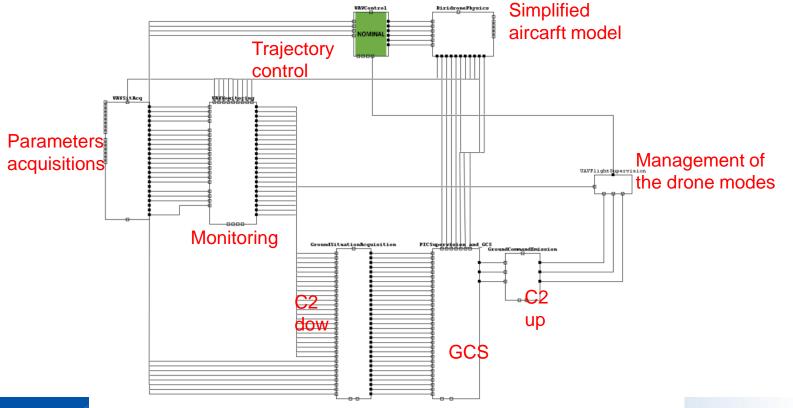
Example of mitigation procedure model

Safety review of the emergency procedures

Goals

- Specify how the tele-operator and the system manage the hazards
- Verify the compliance of the procedure with the safety policy
 - What are the consequences of successful procedures ?
 - What are the consequences of system failure or human error ?

Guidance


- Link with the previous step : at least one procedure should be designed for each degraded situations identified by the safety policy
- Proposal of standard way of writing the procedure
- Tool available to quickly specify procedures and analyse the failure / error effects

Lessons learnt

- Procedures of the pilot manual are sometime too complex and some time inconsistent
- Quick feedback on the robustness to the loss of communication

Example of a functional architecture (level 1)

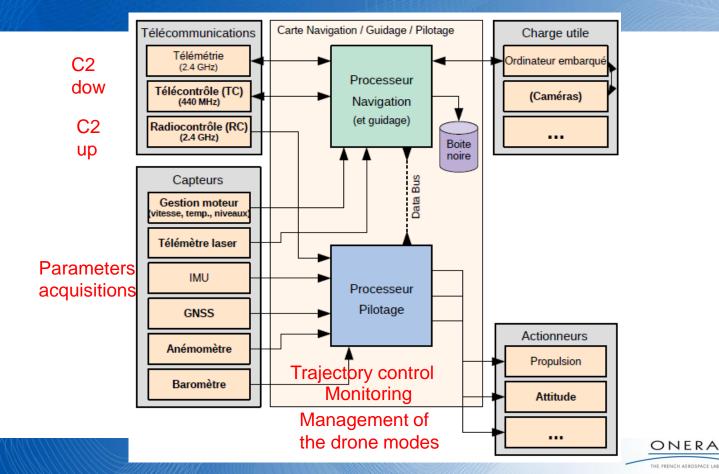
ONERA THE FRENCH AEROSPACE LAB

Safety review of the drone functions

Goal

- Specify the system functions needed for a controlled / degraded flight
- Identify functional failure sets leading to CAT, HAZ, MAJ situations
- Verify safety functional requirements : FDAL, no single design error, ...

Guidance


- Check list of usual functions
- Eurocae ED-125 ARP 4761A recommended practices : Functional Hazard Analysis, Functional Fault tree, models …

Lessons learnt

- Lack of logical details : connexions between functions, monitoring, engagement of flight control mode
- Similarity of flight modes between the 6 platforms

Example of a drone physical architecture (level 1)

14

Safety review of the drone equipment

Goal

- Specify the drone equipment and their failure modes
- Specify the mapping functions equipment
- Identify failure sets leading to CAT, HAZ, MAJ situations
- Verify safety physical requirements : probability of failure, IDAL, no CAT single failure...

Guidance

• Eurocae ED-125 – ARP 4761A recommended practices : FMEA, Fault tree, models ...

Lessons learnt

• Architecture details available, lack of details about mapping between functions & equipment, lack failure rate for some components

Feedback on model validation/audit

Standard librairies of components

- Validation: review, reuse and documentation of components by at least 2 persons of the team
- Audit: short presentation of the generic components + detailed librairies guide available for interested readers

Specific components or system

- Validation: modelling hypothesis traced in the « comment » zone and overal model documentation generated by the person in charge of the study+ systematic simulation of sequences of failures+ review of sequences leading to observers
- Audit: review of pieces of code (especially monitoring and engagement logics), presentation of the model and simulation of scenario of interest

